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High-resolution simulations of forced quasi-geostrophic (QG) turbulence reveal that
Charney isotropy develops under a wide range of conditions, and constitutes a
preferred state also in β-plane and freely decaying turbulence. There is a clear analogy
between two-dimensional and QG turbulence, with a direct enstrophy cascade that is
governed by the prediction of Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525) and
an inverse energy cascade following the classic k−5/3 scaling. Furthermore, we find
that Charney’s prediction of equipartition between the potential and kinetic energy
in each of the two horizontal velocity components is approximately fulfilled in the
inertial ranges.
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1. Introduction
Quasi-geostrophic (QG) turbulence is fundamental for the understanding of

atmospheric dynamics at planetary and synoptic scales. As demonstrated by Charney
(1971), QG turbulence has a lot in common with two-dimensional turbulence, with
a direct cascade of potential enstrophy and an inverse cascade of energy. Ever since
Nastrom & Gage (1985) and Gage & Nastrom (1986) presented observations on
the atmospheric kinetic energy spectrum, attempts have been made to explain the
scaling of the energy spectrum in terms of QG turbulence (e.g. Tung & Orlando
2003), or two-dimensional turbulence (e.g. Lilly 1989; Lindborg 1999). Despite the
difficulties in obtaining a convincing theory for the scaling of the atmospheric energy
spectrum, QG turbulence theory is interesting in its own right. It has a richness
beyond that of either three-dimensional isotropic turbulence or two-dimensional
turbulence. This paper deals with the original formulation of QG scaling by Charney
(1971) and intends to investigate, perhaps, the strongest predictions; that of ‘Charney
isotropy’ and equipartition between the potential and kinetic energy in each of
the two horizontal components. Charney isotropy refers to isotropic scaling of the
potential and kinetic energy spectra, when the vertical coordinate has been scaled
by a factor N/f , where N is the basic state Brunt–Väisälä frequency and f is
the Coriolis parameter. Charney’s prediction of isotropy in the enstrophy inertial
range was supported by Hua & Haidvogel (1986), who simulated QG flow on a
β-plane. This result was later confirmed by studies such as McWilliams (1989), who
also demonstrated the similarities with two-dimensional turbulence regarding cascade
directions. The QG flows are rich in structures such as vortices, and the statistics of
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these have been explored by, for example, McWilliams (1990), McWilliams, Weiss &
Yavneh (1999), Dritschel, de la Torre Juarez & Ambaum (1999), von Hardenberg
et al. (2000) and Reinaud, Dritschel & Koudella (2003). We will complement these
studies by testing the prediction of Charney isotropy and equipartition. To do this,
we will perform a set of very high resolution direct numerical simulations of the QG
potential vorticity equation, under a wide range of conditions.

2. Numerical method
We simulate the Charney QG potential vorticity equation, with the inclusion of a

random and white in time forcing. Ultraviolet dissipation of potential enstrophy is
accomplished by the use of hyperviscosity. Infrared dissipation of energy is maintained
by an optional linear Ekman drag. To allow for the study of β-plane dynamics, we
have included the β-term as an optional term in our simulations. Thus, the simulated
equation is

∂q

∂t
+ (uh · ∇h) q + βv = −ν∆2q + f − αq, (2.1)

where

q = ∇2ψ (2.2)

is the QG potential vorticity, ∆ is the three-dimensional Laplace operator in scaled
coordinates, ψ is the stream function, uh = uex + vey = −∂yψex + ∂xψey is the
horizontal velocity and ∇h the horizontal gradient operator, ν is the hyperviscosity
coefficient and α is an Ekman drag coefficent. The simulations are performed using a
pseudospectral code with triply periodic boundary conditions, 8/9 dealiasing in the
horizontal directions (see e.g. McWilliams 1989) and fourth-order Runge–Kutta time
stepping. The potential enstrophy injection rate, η, is controlled at each time step
by requiring that 〈qfq〉 =0, where 〈.〉 is the average over the box (see Alvelius 1999
for more details regarding the forcing algorithm). The enstrophy injection rate is set
to η = 1, and time is non-dimensionalized by η−1/3 = 1. The forcing is localized in a
spherical shell in Fourier space, so that both barotropic and baroclinic modes are
forced. The forcing is thus Charney isotropic and injects twice as much kinetic as
potential energy into the system. The simulations are all performed with a resolution
of 10243 grid points. Our main simulations are presented in table 1, and they will
be referred to as X1024YZ, where X = S or L depending on whether small-scale (S )
or large-scale (L) forcing is used, Y = E if Ekman drag is active and Z = B if β > 0,
otherwise no indices Y, Z are used.

3. Results
We begin by presenting the results from two simulations where we force at small

wavenumbers k ∈ [5, 9], centred at kf = 7, endeavoured to study the enstrophy cascade
regime in QG turbulence. One of the simulations, L1024E, has an isotropic large-
scale drag imposed, and one is without such a drag (L1024). In both cases, we obtain
quasi-stationary enstrophy cascade ranges after about 60 non-dimensional time units,
as can be seen in figure 1. However, while energy is growing linearly in L1024, it
reaches a quasi-stationary state in L1024E after approximately 250 non-dimensional
time units. Potential energy reaches stationarity much earlier in both simulations. The
potential enstrophy fluxes are presented in figure 2. They are almost constant over a
little bit more than one decade, and in this range – the enstrophy cascade range – both



450 A. Vallgren and E. Lindborg

Run kf ν α tmax K K′ kL εL
q εq Ω Ek Ep

L1024 7 4.0 × 10−19 0 120 – 2.89 4.5 0 1.00 13.2 Incr. 0.12
L1024E 7 1.0 × 10−19 8.0 × 10−3 316 – 2.88 5.6 0.20 0.80 12.5 1.22 0.10
L1024EB 7 2.0 × 10−20 8.0 × 10−3 170 – 3.33 7.9 0.26 0.74 15.8 1.10 0.20
S1024 107 4.0 × 10−19 0 1223 7.0 – – 0 1.00 6.8 Incr. 0.005
S1024E 107 4.0 × 10−19 1.3 × 10−3 1304 7.0 – – 0.02 0.98 8.1 0.023 0.004
S1024EB 107 2.0 × 10−20 1.3 × 10−3 1000 5.2 – – 0.02 0.98 9.0 0.023 0.004
L1024EF (7) 1.0 × 10−19 0 227 – 2.75 8.6 Decr. Decr. Decr. 1.3 0.021
L1024F (13) 2.0 × 10−21 0 366 – 3.26 12.1 Decr. Decr. Decr. 0.004 0.002

Table 1. Stationary statistics from the simulations. The wavenumber kf represents the main
forcing wavenumber (parentheses indicate initial peak distribution for decaying cases), tmax is
how long time a simulation has been run, εL

q is the potential enstrophy dissipation due to
the Ekman drag, Ω is the mean potential enstrophy, Ek is the mean kinetic energy and Ep is
the mean potential energy. Decr., decreasing; Incr., increasing. The remaining parameters are
introduced in the text.
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Figure 1. Temporal evolution of potential enstrophy (solid line), total energy (dashed),
kinetic (dash-dotted) and potential (dotted) energy for L1024 (a) and L1024E (b).
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Figure 2. Potential enstrophy flux for the two simulations L1024 (solid) and L1024E
(dashed). Zero and unity lines are indicated.

simulations show a logarithmically corrected Charney isotropic k−3 energy spectrum
for both kinetic and potential energy (see figure 3; only total energy shown). The k−3

scaling with a logarithmic correction (as anticipated by Herring 1980) is much like
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Figure 3. Compensated energy spectra, k3ε
−2/3
q E(k), for L1024 (solid) and L1024E (dashed)

together with Kraichnan logarithmic fits (dash-dotted).
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Figure 4. R(k ) for L1024 (solid), L1024E (dashed) and φ(k) for L1024 (dash-dotted) and
L1024E (dotted).

that expected in two-dimensional turbulence (Kraichnan 1971), i.e.

E(k) = K′ε2/3
q k−3[ln(k/kL)]−1/3 , (3.1)

where the Kraichnan coefficient K′ is estimated to 2.9, εq is the potential enstrophy
dissipation rate and kL is approximately equal to the lowest forcing wavenumber.
Figure 4 shows the ratio

R(k) =
Ez(k)

Eh(k)
, (3.2)

where Ez(k) is the one-dimensional vertical energy spectrum and Eh(k) is the one-
dimensional horizontal energy spectrum. Figure 4 also shows the ratio

φ(k) =
Ek(k)

Ep(k)
, (3.3)

where Ek(k) and Ep(k) are the three-dimensional kinetic and potential energy
spectra, respectively. In the enstrophy cascade range, R(k) is close to unity, which
is consistent with Charney isotropy. At the forcing wavenumber, however, and at
smaller wavenumbers, Charney isotropy is not valid, although the forcing itself is
Charney isotropic. The ratio φ(k) is close to two in the inertial range, which is
consistent with equipartition. At the forcing scales, however, φ(k) is approximately
equal to unity, although the forcing injects twice as much kinetic as potential energy.
As for the energy fluxes, an inverse energy cascade towards smaller wavenumbers is
observed in the very limited range k < 5, for both the potential and kinetic energy
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Figure 5. Temporal evolution of potential enstrophy (solid), total energy (dashed), kinetic
(dash-dotted) and potential energy (dotted) for S1024 (a) and S1024E (b).
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Figure 6. Compensated energy spectra, k5/3ε−2/3E(k), for S1024 (solid)
and S1024E (dashed).

(not shown). However, there is a continuous transfer of potential energy to kinetic
energy, corresponding to a barotropization of the flow at large scales (as also found
by Smith & Waleffe 1999). The effects of this transfer become clear by investigating
the potential vorticity distribution in real space (see figure 9a). We see the presence
of two dominating structures with opposite sign, which tend to organize in the vertical.
The presence of a drag in the L1024E-simulation slightly suppresses the growth of
these structures. We also see the filamentary debris surrounding these. The fine-scale
structure of the flow is illustrated in figure 10, showing the horizontal and vertical
cross-sections of potential vorticity, revealing the richness of the flow.

In our second set of simulations, S1024 and S1024E, the inverse energy cascade is
investigated. Here, the forcing is in a narrow range k ∈ [105, 109], centred at kf = 107.
Once again, we perform one simulation with Ekman drag (S1024E) and one without
(S1024). Potential enstrophy quickly reaches quasi-stationarity (see figure 5), as the
forcing is much closer to the dissipation range, whereas the energy reaches stationarity
much later, after about 300 non-dimensional time units for the potential energy (both
simulations) and approximately 1000 time units for the kinetic energy in case of an
Ekman drag (S1024E). The corresponding energy flux (figure 7, showing S1024E;
S1024 is qualitatively identical) is mostly towards larger scales with essentially one
and a half decade of stationary energy flux. There is also a small but not insignificant
portion that escapes towards smaller scales. The energy spectra quickly evolves into
nearly Charney isotropic states, with R(k ) ∼ 2/3 (see figure 8) and roughly ∼k−5/3

scaling, with a tendency towards a little steeper spectrum for the kinetic energy part
(not shown, but reflected in figure 6). In particular, this is the case in S1024, where
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Figure 7. Energy flux, normalized by the mean flux in the range k ∈ [10, 100], decomposed
into total (solid), kinetic (dashed) and potential energy flux (dash-dotted) for S1024E. The
zero line is indicated.
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Figure 8. R(k ) for S1024 (solid), S1024E (dashed) and φ(k) for S1024 (dash-dotted) and
S1024E (dotted).

energy tends to build up at large scales in absence of drag. Both simulations develop
an inverse energy cascade range where

E(k) = Kε2/3k−5/3 , (3.4)

where the constant K has been estimated to ∼7.0 in k ∈ [10, 100] for both simulations
and ε is the energy flux. Charney’s equipartition assumption is not fulfilled to the same
degree as Charney isotropy, as the ratio φ(k) is a little bit larger than two (figure 8).
This is reasonably due to the transfer of potential to kinetic energy. A distinct feature
is the tendency for vorticity patches to organize into vertically elongated structures,
that survive for long periods of time. They are not completely barotropic, but tend
to wiggle a little bit with height, as seen in figure 9(b).

In all of the simulations presented so far, the growth of kinetic energy exceeds that
of potential energy. This is a consequence of one of Charney’s assumptions, namely
that the horizontal scales of turbulence are small in comparison with the Rossby
radius of deformation (see Pedlosky 1987), manifested in a transfer of potential to
kinetic energy at large scales.

To test whether the inclusion of the β-effect violates the prediction of equipartition
and Charney isotropy, we have run two simulations including the β-term. One is
forced at large scales (L1024EB) and one is forced at small scales (S1024EB). Both
include an Ekman drag. The physical picture of potential vorticity distribution in
real space (figure 9c, d ) differs significantly from what we have seen before, with
pronounced zonally elongated structures, especially in L1024EB . This corresponds to
an arrest of energy at a scale kβ ∼ β/

√
Ω , similar to the Rhines’ scale (Rhines 1975),
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Figure 9. Snapshots of potential vorticity fields from L1024E (a), S1024E (b), L1024EB (c),
S1024EB (d ) and L1024F (e). Blue colour correspond to negative values and red to positive.

where β has been set to 4.5 in both simulations. This scale is distinct in the meridional
energy spectrum, but it is also clear from figure 9(c), that the width of the structures
are similar in the vertical and the meridional direction. A glance at figure 11 reveals
that there is approximate Charney isotropy over a broad range in wavenumber space
in both simulations. In the large-scale driven simulation L1024EB , the ratio between
the vertical energy spectrum and the ‘meridional’ energy spectrum is approximately
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Figure 10. Snapshots of horizontal (a) and vertical (b) cross-sections of potential vorticity
fields from L1024E. Dark colour corresponds to negative values and bright to positive.
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Figure 11. R(k ) for L1024EB (solid) and S1024EB (dashed), and φ(k) for L1024EB
(dash-dotted) and S1024EB (dotted).

unity, indicating quantitative agreement of Charney isotropy. However, the ratio
between the vertical and the ‘zonal’ spectrum is about three. Note that figure 11
represents the ratio based on a horizontal spectrum from the combined spectra of
meridional and zonal components. In S1024EB , R(k ) is near unity for both of the
horizontal components. In the latter simulation (figure 9d ), the large-scale structures
are more hidden due to the hazy appearance made up by the filamentation and the
large number of small spherical vortices, induced by the forcing. There is approximate
equipartition of potential and kinetic energy in the energy inertial range as φ(k) is
near unity, except for the largest scales. Thus, the deviation from equipartition is not
significant and Charney isotropy in the vertical and meridional direction is maintained
while elongated structures (jets) form in the zonal direction, as a consequence of the
planetary vorticity gradient.

We have also run two cases of freely decaying QG turbulence. One of the simulations
(L1024EF ) has been run from the end state of L1024E, whereas the other (L1024F )
has been run from a randomly generated spectral initial state with unit potential
enstrophy, partitioned into a spherical shell in the wavenumber range k ∈ [11, 15],
distributed with Gaussian amplitudes around kc =13. These two initial conditions
were chosen to give room for a finite-time inverse energy cascade. We found that
total energy is almost perfectly conserved, whereas kinetic and potential energy vary
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Figure 12. Compensated energy spectra, k3ε
−2/3
q E(k), for L1024EF (solid) and

L1024F (dashed).
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Figure 13. R(k ) for L1024F (solid) and L1024EF (dashed) and φ(k) for L1024F
(dash-dotted) and L1024EF (dotted).

slightly in time as a consequence of internal interplay. The potential enstrophy decay
is different between the simulations, with a decay rate ∼t−1.35 in L1024F and ∼t−0.6

in L1024EF . It is reasonable to suspect that the presence of coherent structures
in L1024EF slows down the decay rate considerably. Despite the differences in the
physical setting of the initial conditions, both simulations develop a ∼k−3 direct
enstrophy cascade regime over approximately one decade (see figure 12). In this
range, R(k) ∼ 1, as seen in figure 13, also showing Charney equipartition. Despite the
tendency for the fluid to become more barotropic with time, there is a rich dynamics
in the flow also after a long time period of several O(100) non-dimensional time units
(see figure 9e). Alignment tendencies are clear, but we also see a multitude of vortices
of near spherical shape.

4. Conclusions
We have performed a number of simulations, ranging from small- to large-

scale forcing, with and without Ekman drag and β-effect and two freely decaying
simulations. They all support Charney’s prediction of isotropic energy spectra and
equipartition. It has also been confirmed that QG turbulence behaves much like two-
dimensional turbulence in the sense that we obtain a clear forward potential enstrophy
cascade and a dominating inverse energy cascade. The enstrophy cascade range is
in agreement with the prediction of Kraichnan for two-dimensional turbulence. The
inverse energy cascade scale as ∼k−5/3, but is slightly steeper in the absence of a
large-scale drag. Steeper spectra than k−5/3 in the absence of large-scale drag or in
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the presence of higher-order hypodiffusion have also been observed in simulations
of two-dimensional turbulence (Danilov & Gurarie 2001). There is a weak forward
energy cascade in the case when the forcing is placed at small scales, but it does not
contribute to any significant departure from two-dimensional turbulent characteristics,
not the least because it appears in a region where viscous effects are considerable and
a forward enstrophy cascade governs the dynamics. In the case of freely decaying
turbulence, Charney isotropy represents a preferred state, but there is also a tendency
for coherent structures to develop. These affect the temporal statistics of decay rates.

Computer time was provided by SNIC (Swedish National Infrastructure for
Computing) with a generous grant by the Knut and Alice Wallenberg Foundation.
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